

Cu(OTf)₂ Catalyzed high yield synthesis of Hantzsch 1,4-dihydropyridines

Abhimanyu S Paraskar & Arumugam Sudalai*

Chemical Engineering and Process Development Division, National Chemical Laboratory, Pashan Road, Pune 411 008, India

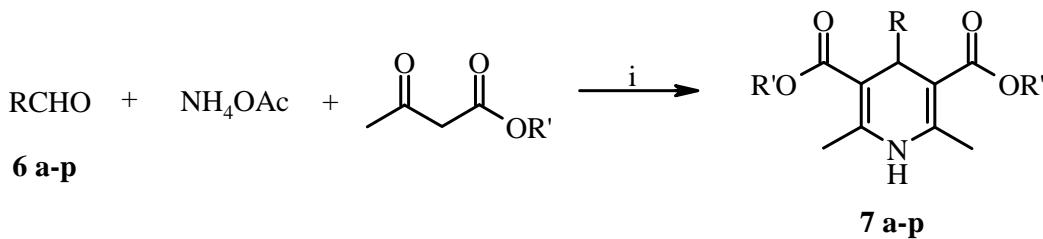
E-mail: a.sudalai@ncl.res.in

Received 23 January 2006; accepted (revised) 30 August 2006

Copper(II) triflate catalyzes efficiently the three-component condensation of aldehydes, β -ketoesters and ammonium acetate in acetonitrile at 25°C to afford the corresponding Hantzsch 1,4-dihydropyridines in high yields.

Keywords: Hantzsch 1,4-dihydropyridines, calcium channel blockers, three-component condensation, cardiovascular diseases, anti-hypertensive drug

IPC: Int.Cl.⁸ C07D


Hantzsch 1,4-dihydropyridines (1,4-DHPs) have emerged as one of the most important classes of drugs, particularly used as calcium channel blockers. Examples include nifedipine **1**, nitrendipine **2**, nimodipine **3**, nicardipine **4**, and amlodipine **5**, which are mainly used for the treatment of cardiovascular diseases, including hypertension¹ (**Figure 1**). Thus, the synthesis of these heterocyclic compounds is of continuing interest because of their remarkable drug action. Several synthetic strategies have been reported to improve their classical methods of preparation². Hantzsch reaction² involves a one-pot condensation of an aldehyde with ethyl acetoacetate, and ammonia either in acetic acid or refluxing in alcohol for a longer time. However, the yields of 1,4-DHPs obtained by the Hantzsch method are generally low. Even though a number of modified methods³ under improved conditions have been reported, many of them suffer from drawbacks such as unsatisfactory yields, requirement of high temperature conditions and long reaction times. Microwave activation stands among the alternative routes proposed during the past decade due to the drastic reduction of reaction times⁴. Thus, the development of an efficient and versatile method for the preparation of Hantzsch 1,4-DHPs is an active ongoing research area and there is scope for further improvement toward milder reaction conditions and improved yields. The versatility of Cu(OTf)₂ as a useful reagent in organic synthesis is well established⁵. In continuation of the studies using Cu(OTf)₂ (Ref. 6), herein is reported a novel and

efficient synthesis of Hantzsch 1,4-dihydropyridines by the modified Hantzsch procedure using Cu(OTf)₂ as catalyst in CH₃CN at ambient temperature (**Scheme I**). Thus, the condensation of 2 mmole of benzaldehyde **6a** with 4 mmole of ethyl acetoacetate and 2 mmole of NH₄OAc in the presence of 1 mole % of Cu(OTf)₂ resulted in the formation of Hantzsch 1,4-dihydropyridine **7a** (**Scheme I**). The reaction was complete in 6 hr at RT and the product was isolated by usual work-up, in 98% yield, with excellent purity. Under similar conditions, various substituted aromatic, aliphatic and heterocyclic aldehydes with electron-donating as well as withdrawing substituents were transformed into the expected 1,4-DHPs in good to excellent yields and the results are summarized in **Table I**. All reactions were clean and the products were obtained in good yields.

In conclusion, it has been shown that Cu(OTf)₂ could be employed as an efficient catalyst, for the first time, to effect the three-component Hantzsch 1,4-dihydropyridine synthesis at RT. The method has successfully been applied for the synthesis of *anti-hypertensive* drug Nefidipine **1**. The catalytic system is also very effective for the aliphatic and heterocyclic aldehydes to give the corresponding dihydropyridines (DHPs) in good yields.

Experimental Section

Melting points are uncorrected. Microanalysis was performed on a Carlo ERBA EA 110B instrument. Infrared spectra were recorded on a Perkin-Elmer

Scheme I:— (i) cat. Cu(OTf)₂ (1 mole%), CH₃CN, 25°C, 4-24 hr, 54 - 98%

683B instrument. The ¹H and ¹³C NMR were recorded on a 200 MHz instrument.

General procedure for the Hantzsch 1,4-dihydropyridines synthesis

A mixture of aldehydes **6a-p** (2 mmole), ethyl or methyl acetoacetate (4 mmole), ammonium acetate (2 mmole) and Cu(OTf)₂ as catalyst (1 mole %) in acetonitrile (5 mL) was stirred at 25°C. After stirring for a specified time (see **Table I**), the reaction mixture was diluted with water and extracted with ethyl acetate (3×20 mL). The combined organic phase was washed with aq. NaHCO₃ solution to remove acetic acid produced in the reaction, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude reaction mixture was then purified by column chromatography using petroleum ether and EtOAc (8:2) as eluent to afford 1,4-dihydropyridines **7a-p** in 54-98% yield.

Diethyl 1,4-dihydro-2,6-dimethyl-4-phenylpyridine-3,5-dicarboxylate, **7a**

Yield: 98%; colorless solid; m.p. 158-59°C (crystallized from EtOH), (lit.(ref. 3a) 156-57°C); IR (KBr): 460, 482, 500, 620, 1011, 1050, 1100, 1180, 1200, 1209, 1500, 1667, 1690, 2350, 2867, 3440 cm⁻¹; ¹H NMR (CDCl₃): δ 1.22 (t, *J* = 7.2 Hz, 6H), 2.31 (s, 6H), 4.06 (q, *J* = 7.2 Hz, 4H), 4.93 (s, 1H), 5.67 (brs, 1H), 7.08 – 7.26 (m, 5H); ¹³C NMR (CDCl₃): δ 14.28, 19.23, 39.59, 59.56, 103.92, 126.06, 127.89, 144.10, 147.61, 167.54; MS: m/z (%): 329 (M⁺, 5), 300 (5), 284 (5), 272 (3), 252 (100), 224 (15), 210 (10), 196 (20), 181 (10), 150 (10), 128 (7), 105 (8), 91 (40), 77 (12), 65 (5). Anal. C₁₉H₂₃NO₄ requires C, 69.28; H, 7.03; N, 4.25. Found C, 69.30; H, 7.00; N, 4.20%.

Diethyl 1,4-dihydro-2,6-dimethyl-4-(4-chlorophenyl)pyridine-3,5-dicarboxylate, **7b**

Yield: 70%; colorless solid; m.p. 144-45°C (crystallized from EtOH), (lit.ref. 3a) 145-46°C; IR

Table I — Cu(OTf)₂-catalyzed synthesis of 3,4-dihydropyrimidin-2(1H)-ones (DHP)^a

No.	R	R ¹	time (h)	Yield (%) ^b
a	Ph	Et	6	98
b	4-Cl-C ₆ H ₄	Et	6	70
c	4-Me-C ₆ H ₄	Et	6	80
d	4-MeO-C ₆ H ₄	Et	4	85
e	4-NO ₂ -C ₆ H ₄	Et	6	72
f	3-NO ₂ -C ₆ H ₄	Et	6	77
g	4-NC-C ₆ H ₄	Et	5	82
h	3,4-(MeO) ₂ -C ₆ H ₃	Et	4	95
i	3,4-(O-CH ₂ -O)-C ₆ H ₃	Et	4	90
j	2-O ₂ N-C ₆ H ₄	Me	12	60
k	1-Naphthyl	Et	9	65
l	2-Naphthyl	Et	6	69
m	2-Furyl	Et	6	85
n	4-Me ₂ N-C ₆ H ₄	Et	6	55
o	2-MeO-C ₆ H ₄	Et	6	82
p	<i>n</i> -C ₉ H ₁₉	Et	24	54

a: reaction conditions: aldehyde (2 mmole), NH₄OAc (2 mmole), ethyl or methyl acetoacetate (4 mmole), Cu(OTf)₂ (1 mol%), 25°C; b: isolated yield after chromatographic purification.

(KBr): 500, 600, 620, 1000, 1130, 1310, 1519, 1694, 2342, 2912, 3400 cm⁻¹; ¹H NMR (CDCl₃): δ 1.22 (t, *J* = 7.2 Hz, 6H), 2.30 (s, 6H), 4.09 (q, *J* = 7.2 Hz, 4H), 4.91 (s, 1H), 5.86 (s, 1H), 7.16 (s, 4H); ¹³C NMR (CDCl₃): δ 14.22, 19.10, 39.19, 59.57, 103.58, 127.85, 129.22, 131.69, 144.20, 146.31, 167.25. Anal. C₁₉H₂₂ClNO₄ requires C, 67.75; H, 6.58; N, 4.15. Found C, 67.63; H, 6.11; N, 3.89%.

Diethyl 1,4-dihydro-2,6-dimethyl-4-(4-methylphenyl)pyridine-3,5-dicarboxylate, **7c**

Yield: 80%; colorless solid; m.p. 160-61°C (crystallized from EtOH); IR (KBr): 500, 1040, 1150, 1200, 1300, 1390, 1450, 1700, 2400, 2460, 3300 cm⁻¹; ¹H NMR (CDCl₃): δ 1.23 (t, *J* = 7.2 Hz, 6H), 2.27 (s,

3H), 2.30 (s, 6H), 4.09 (q, J = 7.2 Hz, 4H), 4.86 (s, 1H), 5.77 (brs, 1H), 6.95 (d, J = 8.1 Hz, 2H), 7.09 (d, J = 8.1 Hz, 2H); ¹³C NMR (CDCl₃): δ 14.25, 19.08, 20.98, 39.03, 59.46, 103.82, 127.68, 128.44, 135.17, 144.10, 144.95, 167.59. Anal. C₂₀H₂₅NO₄ requires C, 69.94; H, 7.33; N, 4.07. Found C, 69.88; H, 7.21; N, 3.89%.

Diethyl 1,4-dihydro-2,6-dimethyl-4-(4-methoxy-phenyl)pyridine-3,5-dicarboxylate, 7d

Yield: 85%; colorless solid; m.p. 193-94°C (crystallized from EtOH); IR (KBr): 500, 700, 1000, 1050, 1200, 1250, 1300, 1500, 1700, 2400, 3300 cm⁻¹; ¹H NMR (CDCl₃): δ 1.23 (t, J = 7.1 Hz, 6H), 2.30 (s, 6H), 3.74 (s, 3H), 4.05 (q, J = 7.1 Hz, 4H), 4.87 (s, 1H), 5.92 (s, 1H), 6.68 (d, J = 8.7 Hz, 2H), 7.11 (d, J = 8.6 Hz, 2H); ¹³C NMR (CDCl₃): δ 14.68, 19.55, 39.13, 55.30, 59.85, 104.53, 113.62, 129.19, 140.79, 144.17, 158.30, 167.98. Anal. C₂₀H₂₅NO₅ requires C, 66.83; H, 7.01; N, 3.89. Found C, 66.63; H, 7.11; N, 3.77%.

Diethyl 1,4-dihydro-2,6-dimethyl-4-(4-nitro-phenyl)pyridine-3,5-dicarboxylate, 7e

Yield: 72%; colorless solid; m.p. 128-29°C (crystallized from EtOH), (lit. ref. 3a) 129-30°C; IR (KBr): 600, 620, 800, 850, 170, 1200, 1310, 1500, 1300, 1700, 2953, 3370 cm⁻¹; ¹H NMR (CDCl₃): δ 1.22 (t, J = 7.3 Hz, 6H), 2.34 (s, 6H), 4.09 (q, J = 7.3 Hz, 4H), 5.05 (s, 1H), 5.80 (s, 1H), 7.40 (d, J = 8.8 Hz, 2H), 8.06 (d, J = 8.1 Hz, 2H); ¹³C NMR (CDCl₃): δ 14.17, 20.07, 40.94, 59.75, 102.52, 124.28, 145.16, 146.09, 155.16, 166.88. Anal. C₁₉H₂₂NO₆ requires C, 60.95; H, 5.92; N, 7.48. Found C, 60.63; H, 5.91; N, 7.50%.

Diethyl 1,4-dihydro-2,6-dimethyl-4-(3-nitro-phenyl)pyridine-3,5-dicarboxylate, 7f

Yield: 77%; ¹H NMR (CDCl₃): δ 1.22 (t, J = 7.3 Hz, 6H), 2.32 (s, 6H), 4.14 (q, J = 7.8 Hz, 4H), 4.98 (s, 1H), 5.97 (s, 1H), 7.32 - 8.11 (m, 4H); ¹³C NMR (CDCl₃): δ 14.12, 19.28, 40.17, 59.62, 102.88, 123.52, 126.78, 131.63, 132.86, 143.14, 146.27, 148.55, 168.40. Anal. C₁₉H₂₂NO₆ requires C, 60.95; H, 5.92; N, 7.48. Found C, 60.89; H, 5.80; N, 7.43%.

Diethyl 1,4-dihydro-2,6-dimethyl-4-(4-cyano-phenyl)pyridine-3,5-dicarboxylate, 7g

Yield: 82%; colorless solid; m.p. 200-02°C (crystallized from EtOH); IR (KBr): 500, 1000, 1040,

1200, 1400, 1400, 1685, 2200, 2930, 3300 cm⁻¹; ¹H NMR (CDCl₃): δ 1.21 (t, J = 7.1 Hz, 6H), 2.33 (s, 6H), 4.10 (q, J = 7.2 Hz, 4H), 5.99 (s, 1H), 5.91 (s, 1H), 7.34 (d, J = 8.5 Hz, 2H), 7.48 (d, J = 8.4 Hz, 2H); ¹³C NMR (CDCl₃): δ 14.19, 19.05, 40.08, 59.66, 102.71, 109.53, 118.97, 128.74, 131.61, 144.98, 153.19, 166.91. Anal. C₂₀H₂₂N₂O₄ requires C, 73.37; H, 6.77; N, 8.55. Found C, 73.33; H, 6.70; N, 8.60%.

Diethyl 1,4-dihydro-2,6-dimethyl-4-(3,4-di-methoxyphenyl)pyridine-3,5-dicarboxylate, 7h

Yield: 95%; colorless solid; m.p. 163-65°C (crystallized from EtOH); IR (KBr): 450, 1050, 1200, 1250, 1300, 1500, 1689, 2390, 2900, 3320 cm⁻¹; ¹H NMR (CDCl₃): δ 1.24 (t, J = 7.1 Hz, 6H), 2.32 (s, 6H), 3.81 (s, 3H), 3.82 (s, 3H), 4.11 (q, J = 7.1 Hz, 4H), 4.89 (s, 1H), 5.72 (s, 1H), 6.70 (m, 1H), 6.83 (m, 1H), 7.14 (m, 1H); ¹³C NMR (CDCl₃): δ 14.26, 19.98, 38.80, 55.50, 59.37, 103.7, 110.94, 111.77, 119.68, 140.81, 143.92, 147.21, 148.06, 167.45. Anal. C₂₁H₂₇NO₆ requires C, 64.76; H, 6.98; N, 3.59. Found C, 64.63; H, 6.81; N, 3.45%.

Diethyl 4-(benzo[d][1,3]dioxol-6-yl)-1,4-dihydro-2,6-dimethylpyridine-3,5-dicarboxylate, 7i

Yield: 90%; colorless solid; m.p. 200-02°C (crystallized from EtOH), (lit. ref. 3a) 202-03°C; IR (KBr): 858, 1108, 1530, 1595, 1630, 1670, 3325, 3406 cm⁻¹; ¹H NMR (DMSO-d₆): δ 1.24 (t, J = 7.2 Hz, 6H), 2.30 (s, 6H), 4.12 (q, J = 7.2 Hz, 4H), 4.84 (s, 1H), 5.86 (s, 1H), 6.00 (s, 2H), 6.72 (m, 3H); ¹³C NMR (DMSO-d₆): δ 14.25, 19.97, 38.80, 59.37, 91.3, 103.7, 110.94, 111.77, 119.68, 140.81, 143.92, 147.21, 148.06, 167.45. Anal. C₂₀H₂₃NO₆ requires C, 64.33; H, 6.20; N, 3.75. Found C, 64.16; H, 6.14; N, 3.66%.

Dimethyl 1,4-dihydro-2,6-dimethyl-4-(2-nitro-phenyl)pyridine-3,5-dicarboxylate, 7j (Nefidipine)

Yield: 60%; colorless solid; m.p. 173-74°C (crystallized from EtOH), (lit. ref. 3a) 172-74°C; IR (KBr): 462, 667, 757, 831, 858, 1020, 1103, 1118, 1190, 1217, 1284, 1309, 1352, 1434, 1492, 1529, 1618, 1649, 1689, 3020, 3442 cm⁻¹; ¹H NMR (CDCl₃): δ 2.34 (s, 6H), 3.59 (s, 6H), 5.73 (s, 1H), 5.87 (s, 1H), 7.21 - 7.30 (m, 1H), 7.41 - 7.54 (m, 2H), 7.66 - 7.70 (m, 1H); ¹³C NMR (CDCl₃): δ 19.0, 34.29, 50.84, 103.0, 123.65, 126.88, 130.88, 132.70, 142.10, 145.42, 147.54, 167.62. Anal. C₁₇H₁₈N₂O₆ requires C, 58.95; H, 5.23; N, 8.08. Found C, 58.88; H, 5.20; N, 8.00%.

Diethyl 1,4-dihydro-2,6-dimethyl-4-(1-naphthyl)-pyridine-3,5-dicarboxylate, 7k

Yield: 65%; colorless solid; m.p. 202-05°C (crystallized from EtOH), (lit. ref. 3a) 202-03°C); ¹H NMR (CDCl₃): δ 0.95 (t, *J* = 8.2 Hz, 6H), 2.29 (s, 6H), 3.92 (q, *J* = 8.2 Hz, 4H), 5.55 (brs, 1H), 5.76 (s, 1H), 7.30-7.55 (m, 4H), 7.60 (d, *J* = 8.7 Hz, 1H), 7.72 (d, *J* = 8.6 Hz, 1H), 8.55 (d, *J* = 8.6 Hz, 1H); ¹³C NMR (CDCl₃): δ 13.7, 18.6, 28.3, 59.9, 100.6, 123.9, 125.2, 125.4, 126.2, 126.4, 126.5, 128.3, 132.5, 133.4, 134.0, 142.7, 165.0. Anal. C₂₃H₂₅NO₄ requires C, 72.80; H, 6.64; N, 3.69. Found C, 72.75; H, 6.49; N, 3.58%.

Diethyl 1,4-dihydro-2,6-dimethyl-4-(2-naphthyl)-pyridine-3,5-dicarboxylate, 7l

Yield: 69%; colorless solid; m.p. 196-98°C (crystallized from EtOH), (lit. ref. 3a) 195-98°C); ¹H NMR (CDCl₃): δ 0.95 (t, *J* = 8.2 Hz, 6H), 2.30 (s, 6H), 3.95 (q, *J* = 8.2 Hz, 4H), 5.55 (brs, 1H), 5.75 (s, 1H), 7.25 - 7.45 (m, 4H), 7.60 (d, *J* = 8.6 Hz, 1H), 7.70 (d, *J* = 8.6 Hz, 1H), 8.55 (s, 1H); ¹³C-NMR (CDCl₃): δ 13.7, 18.6, 30.4, 59.9, 100.5, 124.8, 125.7, 126.7, 127.2, 127.4, 127.5, 127.9, 131.6, 133.5, 135.2, 142.7, 165.0. Anal. C₂₃H₂₅NO₄ requires C, 72.80; H, 6.64; N, 3.69. Found C, 72.43; H, 6.41; N, 3.55%.

Diethyl 1,4-dihydro-2,6-dimethyl-4-(2-furyl)-pyridine-3,5-dicarboxylate, 7m

Yield: 85%; colorless solid; m.p. 163-65°C (crystallized from EtOH), (lit. ref. 3a) 164°C); ¹H NMR (CDCl₃): δ 1.30 (t, *J* = 8.2 Hz, 6H), 2.40 (s, 6H), 4.20 (q, *J* = 8.2 Hz, 4H), 5.30 (s, 1H), 5.80 (brs, 1H), 6.80 - 7.05 (m, 3H); ¹³C NMR (CDCl₃): δ 13.7, 18.0, 31.2, 59.9, 100.6, 105.7, 110.6, 141.2, 142.7, 152.5, 165.0. Anal. C₁₇H₂₁NO₅ requires C, 63.94; H, 6.63; N, 4.39. Found C, 63.70; H, 6.45; N, 4.18%.

Diethyl 1,4-dihydro-2,6-dimethyl-4-(4-*N,N*-dimethylaminophenyl)pyridine-3,5-dicarboxylate, 7n

Yield: 55%; colorless solid; m.p. 200-02°C (crystallized from EtOH), (lit. ref. 3a) 203°C); ¹H NMR (CDCl₃): δ 1.25 (t, *J* = 8.2 Hz, 6H), 2.35 (s, 6H), 3.10 (s, 6H), 4.15 (q, *J* = 8.2 Hz, 4H), 5.10 (s, 1H), 5.6 (brs, 1H), 7.15 - 7.75 (m, 4H); ¹³C NMR (CDCl₃): δ 13.7, 18.6, 30.0, 43.6, 59.9, 100.5, 113.0, 113.7, 120.1, 127.2, 130.1, 141.5, 142.7, 165.0. Anal.

C₂₁H₂₈N₂O₄ requires C, 67.72; H, 7.58; N, 7.52. Found C, 67.68; H, 7.51; N, 7.26%.

Diethyl 1,4-dihydro-2,6-dimethyl-4-(2-methoxy-phenyl)pyridine-3,5-dicarboxylate, 7o

Yield: 82%; colorless solid; m.p. 142-43°C (crystallized from EtOH), (lit. ref. 3a) 138-43°C); ¹H NMR (CDCl₃): δ 1.25 (t, *J* = 8.2 Hz, 6H), 2.30 (s, 6H), 3.90 (s, 3H), 4.10 (q, *J* = 8.2 Hz, 4H), 5.10 (s, 1H), 5.80 (brs, 1H), 6.80 (d, *J* = 8.7 Hz, 2H), 7.4 (d, *J* = 8.7 Hz, 2H); ¹³C NMR (CDCl₃): δ 14.55, 19.45, 39.33, 55.32, 59.80, 104.56, 113.61, 129.20, 141.21, 144.23, 158.34, 167.77. Anal. C₂₀H₂₅NO₅ requires C, 66.84; H, 7.01; N, 3.90. Found C, 66.42; H, 6.89; N, 3.55%.

Diethyl 1,4-dihydro-2,6-dimethyl-4-nonylpyridine-3,5-dicarboxylate, 7p

Yield: 54%; gum; ¹H NMR (CDCl₃): δ 0.90 (t, *J* = 8.4 Hz, 3H), 1.15 (m, 16H), 1.25 (t, *J* = 8.4 Hz, 6H), 1.45 (m, 2H), 2.30 (s, 6H), 3.85 (m, 1H), 4.15 (q, *J* = 8.6 Hz, 4H), 5.65 (brs, 1H); ¹³C NMR (CDCl₃): δ 13.7, 14.0, 18.5, 23.1, 26.8, 28.3, 29.4, 30.0, 30.3, 30.8, 32.5, 59.9, 108.5, 141.2, 165.1. Anal. C₂₃H₃₉NO₄ requires C, 72.04; H, 7.42; N, 3.65. Found C, 71.86; H, 7.39; N, 3.42%.

Acknowledgements

ASP thanks CSIR, New Delhi for the award of senior research fellowship. Authors also thank Dr. B. D. Kulkarni, Head, Chemical Engineering and Process Development Division, for his constant encouragement and support.

References

- (a) Nakayama H & Kasoaka Y, *Heterocycles*, **42**, **1996**, 901; (b) Bossert F, Meyer H & Wehinger E, *Angew Chem Int Ed Engl*, **20**, **1981**, 762.
- 2 Hantzsch A, *Justus Liebigs Ann Chem*, **1**, **1882**, 215.
- 3 (a) Sabitha G, Reddy K K, Reddy C S & Yadav J S, *Tetrahedron Lett*, **44**, **2003**, 4129; (b) Ohberg L & Westman J, *Synlett*, **2001**, 1296; (c) Breitenbucher J G & Figliozzi G, *Tetrahedron Lett*, **41**, **2000**, 4311; (d) Gordeev M F, Patel D V & Gordon E M, *J Org Chem*, **61**, **1996**, 924; (e) Maquestiau A, Maeyence A & Eynde J J V, *Tetrahedron Lett*, **32**, **1991**, 3839; (f) Anderson A G & Berkelhammer G, *J Am Chem Soc*, **80**, **1958**, 992; (g) Phillips A P, *J Am Chem Soc*, **71**, **1949**, 4003.

4 (a) Anniyappan M, Muralidhran D & Perumal P T, *Synth Commun*, 32, **2002**, 659;
(b) Yadav J S, Reddy B V S & Reddy P T, *Synth Commun*, 31, **2001**, 425;
(c) Cotterill I C, Usyatinsky A Y, Arnold J M, Clark D S, Dordick J S, Michels P C & Khmelnitsky Y L, *Tetrahedron Lett*, 39, **1998**, 1117;
(d) Alajarín R, Vaquero J J, Navio J L G & Alvarez-Builla J, *Synlett*, **1992**, 297.

5 Sibi M P & Cook G R, in *Lewis Acids in Organic Synthesis*, edited by Yamamoto H, (Wiley-VCH, New York) **2000**, chapter 12, pp 543.

6 Paraskar A S, Dewkar G K & Sudalai A, *Tetrahedron Lett*, 44, **2003**, 3305.